# CSCI 7000-019 Fall 2023: Problem Set 7 Counting Under Symmetry Due: Monday Nov 27, 2023 <br> Suggested Turn-In Date: Friday Nov 17, 2023 

Joshua A. Grochow

November 9, 2023

1. Use a group action to give an alternative proof that the number of $n$ cycles (that is, cyclic orderings of the numbers $\{1, \ldots, n\}$ ) is $(n-1)$ !.
2. We can think of the previous exercise as counting the number of ways to color the directed $n$-cycle graph $C_{n}$ with $n$ colors, using every color at least once. Derive how many ways there are to color $C_{n}$ with $n-1$ colors, using every color at least once.
3. Using group theory, determine how many labeled graphs (using labels $\{1,2,3,4\}$ ) are isomorphic to the 4 -vertex graph that consists of a square and one diagonal (equivalently, the complete graph minus a single edge).
4. Using group theory, determine how many labeled graphs are isomorphic to a rooted complete binary tree of height $h$ (hence, on $2^{h+1}-1$ vertices).
5. (Cauchy-Frobenius-Burnside Lemma) Let $G$ be a finite permutation group acting on a set $\Omega$. Prove that

$$
(\# \text { orbits of } G \text { on } \Omega)=\frac{1}{|G|} \sum_{g \in G}|\operatorname{fix}(g)| .
$$

Hint: Consider the set $A=\left\{(\omega, g) \in \Omega \times G \mid \omega^{g}=\omega\right\}$. Count $A$ in two ways: (1) sum over each orbit the size of the stabilizer of elements in that orbit, and (2) sum over the elements of $G$, the number of points fixed by $g$.
6. (Pólya Enumeration Theorem, unweighted case) Let $G$ be a finite permutation group acting on a set $\Omega$. Let $C$ be a finite set (of "colors"), and let $\Gamma$ be the set of functions $\Omega \rightarrow C$ (we can think of each such function as assigning a color to each element of $\Omega$ ). For $g \in G$, let $c(g)$ be the number of cycles of $g$ on $\Omega$ (including 1-cycles, i.e., fixed points). Prove that

$$
(\# \text { orbits of } G \text { on } \Gamma)=\frac{1}{|G|} \sum_{g \in G}|C|^{c(g)}
$$

7. Let $V_{n}$ be a set (of "vertices") of size, and let $E_{n}=\{\{u, v\}: u, v \in$ $\left.V_{n}, u \neq v\right\}$ be the set of unordered pairs of distinct elements of $V_{n}$, and let $A_{n}=\left\{(u, v): u, v \in V_{n}, u \neq v\right\}$ be the set of ordered pairs of distinct elements of $V_{n}$. Realize that an assignment of the colors \{black, clear\} to the set $E_{n}$ is the same thing as an undirected graph on vertex set $V_{n}$, and an assignment of those colors to the set $A_{n}$ is the same thing as a directed graph on vertex set $V_{n}$. Using Pólya's Theorem:
(a) Compute the number of isomorphism types of undirected graphs on 3 vertices. Hint: The answer is 4 .
(b) Compute the number of isomorphism types of undirected graphs on 4 vertices. Hint: The answer is 11 .
(c) Compute the number of isomorphism types of directed graphs on 3 vertices.
8. (a) Consider the group generated by the $n$-cycle $(1,2,3, \ldots, n)$ (this is known as the cyclic group of order $n$ ). For each $c$, how many group elements are there with exactly $c$ cycles?
(b) Using Pólya's Theorem and inclusion-exclusion, give another derivation of the results of Exercises 1 and 2.
(c) How many $n$-vertex necklaces are there with 2 colors?
